
Towards a Requirements-based Information Model
for Configuration Management

Gerd Aschemann Roger Kehr

Department of Computer Science
Darmstadt University of Technology, Germanyfaschemann,kehrg@informatik.tu-darmstadt.de

Abstract

Several architectures are defined for distributed systems
management, most of which stem from the network man-
agement domain. They all share the idea of multiple mod-
els, at least comprising an information model, a communi-
cation model, and a functional model. Configuration man-
agement is part of the functional model but is very depen-
dent on the information model. Due to its history in net-
work management, the information model itself is mostly
restricted to describe a priori known properties of hardware
entities or software entities closely bound to the hardware
point of view. Modeling the dynamic relationships of dis-
tributed systems and applications with such a model is hard
if not impossible. Therefore we propose a new information
model that focuses on the dynamic description of distributed
systems. By using object-oriented technologies such as a
prototype-instance model, it is well suited for the actual de-
mands of system administration. Since we do not explicitly
combine it with a particular distribution mechanism, it is
orthogonal to any given or future communication model.
We present an exemplary case study in the analysis to our
approach, and we describe the design and implementation
of our model.

Keywords: distributed systems, configuration manage-
ment, value sharing, inheritance, information model, con-
sistency specification, constraints

1. Introduction

Traditionally, configuration management has been ac-
knowledged as one of the main functional areas in the man-
agement of distributed systems. Together with fault man-
agement, accounting management, performance manage-
ment, and security management (in short FCAPS) it forms
the so-calledfunctional modelof the OSI management ar-
chitecture [15]. This architecture stems from classical net-

work management but also serves as a reference model
to both, other (network) management architectures (e.g.,
SNMP, TMN, WEBM, JMAPI) and higher level manage-
ment architectures for the management of distributed sys-
tems and distributed applications [7]. Besides the functional
model, these architectures usually also define other models,
comprising at least aninformation modeland acommuni-
cation model.

The information model describes the properties of man-
aged systems relevant to management. Therefore it con-
tains the information to configure these systems as well as
a substantial amount of other information that is relevant
for the other functional areas. Since it originates from net-
work management, the information model is well suited for
a priori known attributes of isolated entities, implemented
in hardware or firmware. It mostly has a class-based or hi-
erarchical structure and therefore lacks possibilities ofdy-
namically modeling properties and their relationships in a
distributed system.

The configuration view on a managed network focuses
on the given equipment and its possibilities: It is technol-
ogy driven. Up to now, the typical starting point to configu-
ration management is the question “what can we do?” Due
to the growing complexity of distributed systems and ap-
plications, this target moves to a more requirements-based
approach, i.e., the question “what do we want or need to
do?” System administrators are more and more faced with
the requirement to maintain a complex network of related
services and to distribute them on the given heterogeneous
hardware, featuring advanced techniques like aggregation,
migration, replication, consistent reconfiguration, etc.

We propose a new information model for configuration
management. We leave the classical class-based and there-
fore static information models and introduce a prototype-
based approach which allows to concentrate on the rele-
vant properties to compose a distributed network of service
providers and customers. By using inheritance it is easily
possible to describe large groups of objects which share

1

the same properties and only to define exceptions and ex-
tensions where necessary. It allows to avoid redundancy
which is often found in configuration management. Our
model provides a powerful query and constraint definition
language to define sets of objects and predicates for prop-
erties and relationships. It is thereby adequate to the well
known concept of domains [16] and policies [12]. We be-
lieve that an appropriate modeling of a distributed systems
configuration is a good basis for management in the other
functional areas like fault or security management. As an
example, if a server crashes, it can be simply figured out
which services are directly and indirectly concerned, and
appropriate reconfiguration measures can easily be deduced
within the model. This allows for a fast and complete re-
covery from the faulty situation.

Unlike other architectures, we explicitly do not propose
a communication model. Our information model may be
integrated with various communication models:� It can act as the source for regular information and di-

rectory services (e.g., regular files, DNS, NIS, X.500,
LDAP) with their distribution models.� It can be the source for configuration management in
the existing open or proprietary architectures.� Last but not least one can build a new communica-
tion facility to apply the configuration to the man-
aged systems. This new facility can be based on both
paradigms, a push or a pull style or a combination of
them.

The next section gives a detailed and systematic analysis
of the problem in the form of a case study. Section 3 shows
the design of the model, while Section 4 describes its imple-
mentation and Section 5 introduces a short example of the
model. An overview on related work is given in Section 6.
Before we conclude in Section 8, we briefly introduce some
currently investigated extensions to the model (Section 7).

2. Analysis

Consider the following “NFS configuration” scenario
[18] which is familiar or at least easy to imagine for system
administrators and typical for other patterns in configura-
tion management. In a grown environment like a research
institute or a software development department, we often
find many more or less equally equipped workstations coop-
erating in a peer to peer manner (i.e., in NFS configuration
every diskfull system serves its disks to the other systems).
There are no or only few dedicated file servers. All systems
act as clients to more or less all other systems. Mostly disks
are mounted either statically at boot time or dynamically by
an auto mounter. The latter eases reconfiguration but does

not automate it. System administration is faced with the
following configuration issues.

2.1. Configuration by Policy

Policies System administrators or business officers want
to describe system administration policies in an abstract
way. This may be rules like “every host with sufficient disk
space should hold and export home directories” or “every
subnet must contain an application software server and all
clients in this subnet should use this server as primary re-
source”. On the other hand, there could be restrictions like
“disks holding sensitive data must not be exported to an-
other department”.

Policies can be seen as more politics-based constraints to
distinguish them from the more technical-based consistency
rules.

Consistency We use the term consistent configuration if
the configuration holds against a technical constraint, e.g.,
“a file system shall be mounted or even be included into
an auto mounter configuration only if it is exported to the
appropriate clients”. Another constraint could be that “a
client set must not be empty” which could easily occur if
sets are described in an abstract way.

2.2. Maintainability

Like in software engineering, maintainability is much
easier if built into the specification part of the system rather
than into the implementation or application of the system.
Policies and consistency rules are specifications in a de-
scriptive sense. Furthermore, maintainability needs support
of the following techniques.

Abstraction Several levels of abstraction should be
possible—policies are mostly at the highest level. Suppose
an application software server exports a disk with platform
specific software, i.e., software for a specific combination
of processor and operating system such assparc-sunos
vs.sparc-solaris. The set of clients should be defined
by a description like “all hosts belonging to that platform”
instead of a concrete list of hosts that would be hard to main-
tain.

Reuseability All equally equipped systems share their
disks under mostly the same conditions to their clients.
Only few of them are bound to exceptions like restrictions
or extensions to client access rights or have other extensions
like additional disks. There should be a way to describe the
default behavior as a prototype and allowing for the descrip-
tion of exceptions and extensions. These extensions and
exceptions should themselves be subject to prototyping, if
appropriate.

2

Extensibility Prototyping also eases extensibility. For ex-
ample, adding new hosts usually means to check the con-
figuration of every service they offer. The vendor-supplied
configuration often does not match the system administra-
tors requirements. If the new system is comparable to exist-
ing ones, it should be easy to apply the same configuration
pattern to it and only check for exceptions and extensions.

Changeability After moving a service (e.g., data to an-
other server), easy reconfiguration should be supported
which preserves all predicates defined for the configuration
parameters belonging to the service.

2.3. Application to the Real World

Mapping more or less abstract configuration descriptions
to the real world has to cope with additional problems.

Heterogeneity Different operating system vendors often
describe the same aspects in rather different ways. For ex-
ample, some require a set of permitted clients to be a list of
(canonical) host names, while others allow for wild-cards
or predefined sets of names like NIS netgroups. On the one
hand it must be possible to describe such information in an
abstract, extensible, and vendor-independent way. On the
other hand transformations from the abstract description to
the vendor-specific interface must be provided, be it a file
or a repository with its own syntax, a command-based in-
terface, or something else. Even if a new system or a group
of new systems extends heterogeneity of the whole zoo, the
policies usually remain the same. In this case, a new trans-
formation of abstract descriptions to a concrete interface
must be integrated.

Replication of Services Important services, e.g., applica-
tion software in our scenario, should be available multiple
times to increase reliability. If the servers are imported
by an appropriate auto mounter configuration, mostly au-
tomatic recovery from a file server crash can be achieved
on the client side.

Aggregation of Services Sometimes different services
are composed to form a new higher-level service. For in-
stance, boot service for diskless systems like X-terminals,
network computers, network printers, or nomadic systems
like laptops often require BOOTP or DHCP besides NFS.
A technical requirement (a consistency constraint) is to per-
form such a service at least in the same network segment as
the client systems if not from the same server.

3. Design

3.1. Object-oriented Configuration Model

Uniform representation of data is one key component
that makes reasoning about information possible. The first

step towards a uniform representation of information is to
useobjectsas the central modeling entity. Object-oriented
modeling in the domain of software development is a de-
facto standard. Applying object-oriented techniques to con-
figuration management is the central shift in our approach
that offers several new aspects in configuration systems.

Representation Objects allow for the abstract representa-
tion of information without considering the concrete syntax
in a particular environment.Transformersthat generate the
concrete syntaxcan be used as back-ends for configuration
systems. Using more abstract representations yields flexi-
bility in configuration processes and re-usability of config-
uration information.

Aggregation Aggregation is one of the fundamental prin-
ciples of object-oriented modeling. Objects can be com-
posed to form largeraggregate objectsto obtain new con-
figuration entities with new properties. This fundamen-
tal modeling technique should be available in configuration
systems.

Relations Objects in the real world are usually related to
other objects. For example, they describe relations such
asdepends-on, is-a, part-of, etc. In configuration systems
most objects are not isolated and are in relation to other ob-
jects. A configuration system should allow the management
of these links in appropriate ways. They could be used to
reason about the relations in a system. Making these links
explicit is a form ofdocumentationthat may be necessary to
describe a system. In particularinter-servicedependencies
(e.g., a service which can only work if another service is
up and running) cannot be expressed in most configuration
systems.

Query Language Since the representation of objects fol-
lows a fixed schema, query languages can be developed to
query all kinds of information in a uniform way. This is
particularly important in heterogeneous systems where uni-
form queries are hard to implement. Queries are often used
to describe a high-level policy such as “all hosts in that
building use that primary name server”. The ability to store
queries itself as first-class persistent objects makes it possi-
ble to represent such queries declaratively within a system.

3.2. Repository

In Figure 1 the overall architecture of our system is
shown. A central repository manages all kind of configu-
ration information. Objects are stored in the repository and
can be transformed in to a concrete syntax as necessary. The
transformation step can occur inside or outside the reposi-
tory yielding so-calledexternal documents. Further distri-
bution of documents can be done using reliable transport
systems.

3

External Documents

Transformation

Groups / Views

Aggregation

Delegation

Object Repository

Objects
Constraints

Distribution
Installation

Activation

Targets

Figure 1. Object Repository Embedded into a Larger System Ar chitecture

3.3. Object Model

Objects are the fundamental concept of organization in
our system. An object has anidentityand consists of a set
of slots. A slot is a tupleS = (name, value, attributes).
The values of slots can be primitive types such as numbers,
strings, etc., objects, and links to other objects. Slot values
can beevaluated. Objects can be stored as slot values which
allows for the creation of aggregate objects. An object can
be a part of at most one object.Links are slot values that
reference other objects. Thereby, arbitrary graph structures
can be constructed.

Each object has a uniquename. Objects are organized
in a hierarchical name space. The name space can be com-
pared to hierarchical name spaces in traditional file systems.
Objects can be seen as adirectorycontaining other objects.

3.4. Inheritance by Delegation

As previously described, redundancy of configuration in-
formation should be avoided in configuration systems. One
common way of reusing information isinheritance[19].
Typically, inheritance is applied in programming languages
to achievecode reusewhereas reuse of values is of less
concern. The research onprototype-basedprogramming
[11, 21] has proposed to integratevalue sharingamong ob-
jects into programming languages. In this model objects are
not an instance of a particular class. Therefore the notion of
class-lessorobject-centeredprogramming are often used to
describe this kind of concept.

As noted in [10], strictly class-based modeling can have
a significant impact on the modeling flexibility which con-

forms to our personal experience in the domain of system
and network management. Therefore, we have decided to
follow a more dynamic approach where objects can be cre-
ated on-the-fly and whose structure can be modified without
any prior class-like description. One may be tempted to as-
sume that missing structural definitions may lead to an un-
manageable object pool. As we will see later, thisschema-
lessmodeling is not a disadvantage at all sinceconstraints
can be used to achieve the same results in a more flexible
way.

A special relation calleddelegation[11] can be used to
implement inheritance among objects. The values of slots
are requested by sending an appropriate message to an ob-
ject. A message is a tupleM = (object, slot-name, ar-
guments). If objecthas a slot namedslot-name, the value
of the slot is returned. If the object does not own a slot
with this name itdelegatesthe message to itsparent object.
A special relation calledparent-of-relation links objects to
their parents. Hence, the slot look-up succeeds if at least
one parent can return an answer to the original message.

This principle eases the description ofdefault objects
that implementdefault valuesfor configuration entities.
New objects can be connected to these objects with the
parent-of-link resulting in an inheritance of all default val-
ues. Local modifications to the new object can be done to
describeexceptionsandextensionsfrom the default object.

3.5. Integrity Checks with Constraints

The second important aspect of our model is to offer con-
cepts for the specification ofsyntacticas well assemantic
integrity checkson a system configuration. One advantage

4

of representing all modeled entities as objects is that all rel-
evant information is uniformly accessible in the system. It
allows to reason about a configuration and to detect model-
ing inconsistencies prior to installation and activation of the
configuration information.

To be as flexible as possible, our system allows for the at-
tachment of arbitrarypredicatesto objects that implement
system contstraints. These predicates are written in COM-
MON L ISP [17] and have free access to the objects inside
the repository. Since predicates are completely separate
from each other, each predicate declarativelyguardsan es-
sential property of the system. We have chosen LISP pri-
marily for its richness in high-level abstraction principles,
its ability to add new functions at run-time in an elegant
way, and being reasonably fast even for complex integrity
checks. Other scripting languages—such as TCL, PYTHON,
or SCHEME—could have been chosen as well.

Currently, integrity checks can be triggered manually
that evaluate all predicates in a system and issue appropriate
warnings if conflicts or inconsistencies arise. This scheme
can be improved with the use of data dependency manage-
ment as implemented in the KR system [5, 13]. Modified
data can then be used to trigger all dependent contraints as
well, leading to an incremental constraint checking scheme
and thus minimizing re-computation costs.

3.6. Computed Slots

Slot values can also be LISP functions taking arbitrary
arguments. Computed slotsare parameter-less functions
that have access to the whole system. They are stored as
ordinary slot values and can be used to implementbehavior
in the system, such as the transformation of objects into a
concrete syntax for a certain application. Additionally, cer-
tain operations in the repository can be automated by LISP

functions that have side-effects on the repository. Hence,
the system can be characterized as a repository that focuses
on the management of data but additionally offers full pro-
grammability.

Similar to incremental constraint checking, computed
slots can take advantage of data dependency management
leading to a scheme that allows the inference of all de-
pendent values if changes in the repository have been per-
formed. This enables the redistribution of only those data
that actually have been changed. Based on our experience
with todays constraint-solver technology, we have designed
our object model with strong consideration of a future inte-
gration of a solver to our system.

With computed slots and queries one can representob-
ject groupsasfirst-classobjects. Agroupcan be seen as a
persistent set or list of objects obtained by a query. This is
similar toviewsin database management systems. Groups
can be constructed from other groups by using arbitrary set

operations such asunion, intersection, orset difference. We
believe that such high-level descriptions of object groups
are a very important design concept underestimated in cur-
rent system configuration environments.

4. Implementation

The current implementation of our configuration system
consists of several parts.

Repository The current system consists of a repository
implemented in LISP. It implements the object model and
the interaction to backing store. It is connected to an TCP/IP
socket that offers full access to the repository.Persistence
is currently achieved using a load/store model.

Web-Interface We have implemented a web-interface
based on CGI-scripts that connect to the repository via the
socket interface. The contents of the repository may be
browsed and objects may be inspected. Links in the object
model are represented as hyper links. Local and inherited
slots may be visited easily. An online demo of the interface
may be found in [9].

Corba-Interface A CORBA server [14] has been imple-
mented that makes the repository accessible from arbitrary
CORBA clients. The server is connected to the repository
and simply transforms incoming method calls into appro-
priate requests for the repository.

5. Example

Giving a complete introduction into syntax and expres-
siveness of our approach is beyond the scope of this article.
Figure 2 shows a brief and syntactically incomplete exam-
ple of a system configuration, cf. [8] for further details.

Basic Mechanisms At first we take a look on the objects
and the groups with the solid lines on the left side and the
center of the figure. It describes a network of Sun worksta-
tions with NFS servers and clients. Note that some object
names, e.g., of objectsA to F start with the word:proto.
This is only a naming convention, we use these objects as
prototypical descriptions for other objects, but they need
not be named with the:proto prefix. The first two objects
(A and B) have simple slots with text and integer values.
They are used to describe the CPU type and operating sys-
tem property of host objects. CPU and OS together form
a platform, objectC, which holds references to the former
simple objects. A prototypical host object (D) is simply
characterized by its platform. A server host prototype (E)
for the same platform is derived from this host prototype,
thereby inheriting the platform information, and extended
by the slotEXPORTS. ObjectE now has two slots,PLAT-
FORM andEXPORTS.

5

/os/:proto-sunos

 MAJOR=4
 MINOR=1

 NAME="SunOS"

/host/:proto-sparc-sunos
 PLATFORM

/platform/:proto-sparc-solaris
 OS

/os/:proto-solaris
 MAJOR=5
 MINOR=5

 NAME="Sparc"
/cpu/:proto-sparc

/host/:proto-sparc-solaris
 PLATFORM

/host/:proto-sparc-sunos-server
 EXPORTS

/export/:proto-software
 FS="/software"
 CLIENTS

Inheritance Reference Single Object Object Group

/host/sun_ws_1
 NAME="Sun1"
 IP=130.83.14.1

/host/sun_sv_1
 NAME="Sun17"
 IP=130.83.14.17

/host/sun_ws_23
 NAME="Sun25"
 IP=130.83.14.25

/host/:group-same-platform
 (select HOST
 from /host/:group-suns
 where (fun (HOST)
 (equal (send HOST PLATFORM)
 PLATFORM)))

/platform/:proto-sparc-sunos
 OS
 CPU

A

C

B

/host/:group-suns

G

I J

L

M

N O

D

P

E

F

H

K

 IP=130.83.14.24
 NAME="Sun24"

/host/sun_sv_5

 PLATFORM

Figure 2. Configuration Example

Query Language The exports objectF gives a file system
(slot FS) and a list of clientsG. This list is a very simple
example of the query language. It selects all hosts from
the group of Sun hosts (/host/:group-suns) with the same
platform as the host having theEXPORTS slot. It can be
used to compute the list of NFS clients of a host. In real
systems management we would not directly compute the
list of NFS clients for the/etc/exports file of each host but
use NIS and generate appropriate netgroups instead.

Real World Objects Now we can start to define the first
representatives of real hosts. Some workstation objects (I)
are directly derived from the platform prototype (D). Each
of them has its own name and IP address. In the same man-
ner we define some server hosts (J) by inheriting from the
server prototypeE. In fact they now have four slots,PLAT-
FORM, EXPORTS, NAME, andIP. All hosts together (I
andJ) form the group of Sun hosts (H).

Extension Now we want to extend our world of Sparc-
Sunos hosts by a new operating system. This could be the
beginning of a migration process to the new OS. Therefore
we introduce the dotted objects on the right hand side of
the figure. We derive a new OS prototype (K) from the
Sunos prototype. The OS name remains the same but major
and minor release number are overwritten. The same hap-
pens by the new platform prototype (L) which inherits the
CPU information fromC but overwrites the OS slot. Con-
sequently we introduce a new host prototype for the new
platform (objectM). Note that we do not set up a new server
prototype like the objectE for the new platform. In the be-
ginning we start with only one server object (N) and do not
need a server prototype. It can be easily introduced on de-
mand if the migration process requires more servers. Our
only Solaris server inherits from the given server prototype
(E) but overwrites thePLATFORM slot by the appropriate
reference (to objectL). The latter is necessary, since we do

6

not provide multiple inheritance which has difficult seman-
tics in general, e.g. which inherited information is valid if
we multiply inherit the same slot. The list of clients will
therefore be correctly computed by the given select expres-
sionG although it was originally specified for another plat-
form. Finally we have some Solaris workstations (O). Mi-
grating hosts from, e.g.,J to O is simple by changing the
inheritance relation to the new host prototypeM. All new
(or migrated) hostsN and O form the extensionP of the
group of Sun hostsH.

NFS Imports However, in the figure we explicitly de-
scribe only the NFS export relationships. In the real world
we would have additional information about the hosts, e.g.,
their location. Since we have — at least in the Sunos case —
redundant servers, there could be a computed slotSERVER
for every client, referring to the closest server. Together
with an auto mounter we can also take advantage of the re-
dundancy by computing also one or more backup servers
for the clients. In case of a server fault, the auto mounter
would automatically mount a backup server.

Transformation and Installation We also do not show
the transformation of internal information to external repre-
sentations. As we mentioned above there are several possi-
bilities. Currently the repository is a single central instance.
Since it is written in LISP we can directly generate files like
NFS export lists, mount tables etc. These files can be ap-
plied to the different hosts by well known communication
facilities (like the UNIX toolsrcp, rdist or rsync). Some of
the information will be put into appropriate naming services
like NIS or DNS and distributed by their specific mech-
anisms. A very other possibility is to run special agents
(e.g., UNIX daemons) on every host and let them replace
the changed information in the local configuration reposito-
ries, e.g., plain files or registries. In all cases, however,we
can take advantage of a dataflow analysis of the changed in-
formation and regenerate and replace (reconfigure) only the
affected external configuration files and local repositories
on the affected hosts.

6. Related Work

Many configuration systems combine an information
model with the distribution and installation models. Since
we are primarily interested in the information model, we
concentrate on the information models of these systems.

CFENGINE [2] is a configuration system that combines
an information model consisting ofpatternsand associated
actionswith an interpreterthat performs the actions if pat-
terns match. Patterns are matched against an interpreter’s
current context—such as host name or operating system
version—and in case of a match the corresponding actions
are executed, typically resulting in the change in the config-

uration of a service on the host the interpreter is currently
running. Due to the potentially unknown context the declar-
ative description is applied to, it is inherently difficult to im-
plement integrity checks, since noextensionaldescription is
available.

GENUADMIN [6] implements a simple inheritance
mechanism among so-calledstanzasthat describe config-
uration entities as its basic abstraction principle. Stanzas
exist in a flat name space. Higher-level abstractions such as
sets and set operations or computed slots as well as integrity
checks can only be realized as external extensions.

LCFG [1] introduces a three-layered name space of the
form (host, subsystem, attribute) to store information. The
installation model is separate for each subsystem. Similar
to GENUADMIN , other services must be implemented ex-
ternally to the information model.

The Raven Configuration Management System [3] com-
bines a class-based object model with configuration asser-
tions written in a first-order calculus language. It sup-
ports mechanisms for automatic reconfiguration by apply-
ing monitoring techniques, and similar to our approach, fo-
cuses on the integration of managed objects and configura-
tion information. As far as we know, information sharing
among objects and schema changes at run-time are not di-
rectly supported.

In [20], basic configuration data is managed by relational
tables, whereas modular entities calledprescriptionsare
used as central specification components. They implement
a hybrid approach that combineslogic-orientedspecifica-
tions used for verification with anoperationalprocessing
model for the realization of repair steps of configurations.
In contrast to our work, the main focus lies on the integra-
tion of descriptions with repair, whereas our work currently
focuses on abstract representations of the description of the
basic configuration information combined with predicates
that may have side-effects on the contents of a repository.

7. Future Work

Several extensions of the current system are planned.

Improved Web-Access We plan to extend the web-
interface to offer easy access to the repository. The main
focus lies on a user interface based on an appropriate inter-
action model with the repository.

NFS-Server Since the name space is organized similar to
a hierarchical file system, we plan to implement an NFS-
server that maps file system operations onto the repository.
Since the semantics of a file system are different from the
repository semantics, we are not yet sure to what extend a
useful integration of both concepts is achievable.

Constraints As outlined in Section 3.5, we plan to add a
constraint-solver into the repository that manages all data

7

dependencies among objects, predicates, and computed
slots. This enables the automatic detection of all depend-
ing objects in the repository that are affected after a value
change has occurred. This should result in minimized distri-
bution costs and add monitoring capabilities to the system.

Modeling Patterns Similar to design patterns [4] we be-
lieve that more modeling patterns may emerge in a partic-
ular configuration domain which we believe is a potential
area of research. Our approach offers the potential exten-
sibility of the repository to represent such patterns both on
the language and the object level.

8. Conclusions

As we have seen in the analysis of the requirements for
configuration management, there is a particular need for a
new information model. It should be focused on the de-
mands in configuration management instead of the very
detailed description of hardware and software properties
which are mostly only useful to other areas of management,
i.e. failure, security, or performance management. Besides
this we believe that management of these other areas can be
better supported if the appropriate information models were
based on well-suited configuration descriptions.

Finally, we have shown that the given problems in Sec-
tion 2 can be solved with the proposed model given in Sec-
tion 3. Our prototype-based object model allows for de-
scription of dynamic relationships, abstraction, and extensi-
bility. By inheritance of data and groups we provide reuse-
ability and changeability. Policy management, consistency,
and integrity checks are integrated by a powerful query lan-
guage, predicates, and computed slots. The latter also pro-
vides a mapping of abstract information to service configu-
rations in the managed systems with respect to their hetero-
geneous syntaxes. The required aggregation of services can
directly be expressed by aggregation of objects. Finally, the
description of the redundancy of services is supported by
sharing information among objects without the need for re-
dundancy in the object repository.

References

[1] P. Anderson. Towards a High-Level Machine Configuration
System. InProceedings of the 8th USENIX Conference on
Large Installation System Administration (LISA), pages 19–
26. University of Edinburgh, Sept. 1994.

[2] M. Burgess. Manual of cfengine version 1.3.6. Centre of
Science and Technology, Faculty of Engineering, Oslo Col-
lege, Norway, June 1996.

[3] T. Coatta and G. Neufeld. Distributed Configuration Man-
agement Using Composite Objects and Constraints. InSec-
ond International Workshop on Configurable Distributed
Systems, Pittsburgh, 1994.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Massachusetts, 1994.

[5] D. Giuse. KR: Constraint-Based Knowledge Representa-
tion. Carnegie Mellon University, Oct. 1993. This document
is part of the GARNET [13] distribution.

[6] M. Harlander. Central System Administration in a Hetero-
geneous Unix Environment: GeNUAdmin. InProceedings
of the 8th USENIX Conference on Large Installation System
Administration (LISA), pages 1–10, Sept. 1994.

[7] H.-G. Hegering and S. Abeck.Integrated Network and Sys-
tem Management. Addison-Wesley Publishing Company,
Reading, Mass., 1994.

[8] R. Kehr. SCOT — System Configuration Tool, Entwurf und
Implementierung eines Frameworks zur Realisierung von
Informationsmodellen für Konfigurationssysteme. Master’s
thesis, FG Verteilte Systeme, FB Informatik, TU Darmstadt,
Sept. 1997.

[9] R. Kehr. The Scot Home Page.http://www.informatik.tu-
darmstadt.de/VS/Forschung/Management/SCOT/, Oct.
1997.

[10] B. Krogh, S. Levy, A. Dutoit, and E. Subrahmanian. Strictly
Class-Based Modeling Considered Harmful. InProceedings
of the 29th Annual Hawaii International Conference on Sys-
tem Sciences, pages 242–250, 1996.

[11] H. Lieberman. Using Prototypical Objects to Implement
Shared Behavior in Object-Oriented Systems. InProc. of
the OOPSLA ’86, pages 214–223, Oct. 1986.

[12] J. D. Moffet. Specification of Management Policies and Dis-
cretionary Access Control. Chapter 17 in [15].

[13] B. A. Myers, D. Giuse, R. B. Dannenberg, B. V. Zan-
den, D. S. Kosbie, E. Pervin, A. Mickish, and P. Marchal.
GARNET: Comprehensive Support for Graphical, Highly-
Interactive User Interfaces.IEEE Computer, 23(11):71–85,
Nov. 1990.

[14] OMG. The Common Object Request Broker: Architecture
and Specification, Revision 2.0. Object Management Group,
July 1995.

[15] M. Sloman, editor.Network and Distributed Systems Man-
agement. Addison-Wesley Publishing Company, 1994.

[16] M. Sloman and K. Twiddle. Domains: A Framework for
Structuring Management Policy. Chapter 16 in [15].

[17] G. L. Steele Jr.Common Lisp — The Language. Digital
Press and Prentice-Hall, second edition, 1990.

[18] Sun Microsystems Inc. NFS: Network File System Protocol
Specification. Internet RFC 1097, Mar. 1989.

[19] A. Taivalsaari.A Critical View of Inheritance and Reusabil-
ity in Object-Oriented Programming. PhD thesis, University
of Jyväskylä, Finland, Nov. 1993.

[20] J. D. Thornton. Practical Descriptions of Configurations for
Distributed Systems Management. InThird Int. Conf. on
Configurable Distributed Systems, Maryland, pages 36–43,
1996.

[21] D. Ungar and R. B. Smith. Self: The Power of Simplicity.
Lisp and Symbolic Computation, 4(3):187–206, 1991.

8

